Vacuum distillation separates mixture components under reduced or high pressure. When vacuum distillation occurs at a lower boiling point, compounds are separated from higher boiling point compounds mixtures. In order to get the desired valuable products separated and recovered, vacuum distillation is necessary for several industries including:
Vacuum distillation operates to extract and capture light hydrocarbons that disassociate from crude oil and to avoid thermal degrading or discoloration of the product. Moreover, vacuum distillation lowers operating costs, averts breaking hydrocarbon chains due to excessive heat, reduces undesirable side reactions, and increases product recovery when maximum temperature constraints are applied.
Atmospheric distillation happens when the product is heated and distilled under atmospheric conditions. In this process, lots of heating energy is required. It is important to not degrade the quality or properties of the product needing distilled.
The vacuum distillation column is typically large, with column diameter up to 46 ft. (14 m), heights up to 164 ft. (50 m), and feed rates to approximately 160,000 barrels a day.
Vacuum distillation columns must provide good vapor-liquid contact while maintaining a low-pressure increase from the top of the column to the bottom. Therefore, vacuum columns utilize distillation trays only when withdrawing products from the side of the column. Most of the columns use packing material for the vapor-liquid-contact because such packaging has a lower pressure drop than distillation trays. Packaging material can be structured sheet metal or randomly dumped packing like Raschig rings.
The absolute pressure of 10 to 40 mmHg in the column is most often achieved by using multiple stages of steam jet ejectors, or a combination of steam ejectors and liquid ring vacuum pumps.